Z(1st Sm.)-Computer Science-MDC/CC-1/CCF

2023

COMPUTER SCIENCE - MDC

Paper : CC-1

Full Marks : 75

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any three questions from Section - A and any five questions from Section - B.

- 1. Answer any five of the following :
 - (a) Write two differences between low-level and high-level languages.
 - (b) Find out the octal representation of $(1F5\cdot A2)_{16}.$
 - (c) Prove that $X + Y \cdot Z = (X + Y) \cdot (X + Z)$, where X, Y and Z are Boolean variables.
 - (d) Design a two input AND gate using a 2×1 multiplexer.
 - (e) What is a common anode type seven segment display?
 - (f) State the advantages of using synchronous counters over asynchronous counters.
 - (g) Mention the differences between sequential and combinational circuits.
 - (h) What is Delay flip-flop?

Section - A

2. Explain the working of a 4-bit binary adder-subtractor circuit with a neat diagram.	5
3. What is a magnitude comparator? Design a 1-bit comparator using NAND gates.	2+3
4. Convert a D flip-flop into a JK flip-flop.	5
 5. (a) What do you mean by manchester code? (b) What are the differences between weighted and non-weighted code? (c) Convert (9CB)₁₆ = ()₂? = ()₈? 	1+2+2
6. (a) Design a D flip-flop.(b) Convert it to Toggle flip-flop.	3+2

Please Turn Over

2×5

Z(1st Sm.)-Computer Science-MDC/CC-1/CCF

(2)

Section - B

 (a) Define half adder. (b) Implement a full adder using two half adders. (c) Why do we call decoders as min-term generators? Explain with an example. 	2+3+5
8. (a) State De-Morgan's theorems.	2.5.5
(b) Convert into canonical POS. $Y = AB + BC$.	
(c) Simplify the expression given below and draw the diagram by NAND gates :	
$Y = \Sigma_{m}(1, 2, 6, 7, 8, 13, 14, 15) + \Sigma_{d}(0, 3, 5, 12).$	2+3+5
9. (a) Define full subtractor.	2.3.5
(b) Implement a full subtractor using a 4×1 multiplexer.	
(c) Why demultiplexers are called data distributors?	
(d) Design an even parity checker.	2+3+3+2
	2.3.3.2
10. (a) Subtract 24_{10} from 14_{10} by 2's Complement method. (b) Fill in the blank : (17) $+$ (21) $-$ (0F) $-$ (2)	
(b) Fill in the blank : $(17)_{10} + (21)_8 - (0F)_{16} = (?)_2$.	
(c) State the differences among Super, Mainframe, Mini and Personal Computer.	3+3+4
11. (a) Define propagation delay and noise margin in a logic gate.	
(b) Convert $(10110111)_2$ into gray code.	
(c) Design a Johnson Counter using D flip-flops.	4+2+4
12. Design 32 to 1 multiplexer using 8 to 1 multiplexers. — Explain with truth table.	1
13. (a) Design a priority encoder using basic logic gates and give the truth table.	
(b) Realize a 2 to 4 decoder using NAND logic gates.	
	5+
14. (a) What is the truth table of a JK latch? From that deduce the characteristic equation, JK latch using NAND gates.	
(b) Define the race around condition of JK flip-flop and hence explain how master-slav overcomes this issue.	e JK flip-fl

5